PITHAPUR RAJAH'S GOVERNMENT COLLEGE (A), KAKINADA

DEPARTMENT OF MATHEMATICS

Laveti. Surya Bala Ratna Bhanu _{M.Sc,B.Ed}

Lecturer in Mathematics

Phone:7330946793 ,9704768781. Email: <u>bhanuasdgdc@gmail.com</u> **Theorem:** Prove that the linear span L(S) of any subset S of a vector space V(F) is a subspace of V(F).

Proof: Taking $S = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$ be a subset of the vector space V(F).

Clearly, L(S) is a nonempty subset of V(F).

Let
$$\alpha$$
, $\beta \in L(S)$, then

$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \cdots + a_m \alpha_m$$
 and

$$\beta = b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_m \alpha_m$$
, where $\alpha_i, b_i \in F$, $\forall 1 \le i \le m$.

For $a, b \in F$,

$$a\alpha + b\beta = a(a_1\alpha_1 + a_2\alpha_2 + \dots + a_m\alpha_m) + b(b_1\alpha_1 + b_2\alpha_2 + \dots + b_m\alpha_m)$$

$$= (aa_1 + bb_1)\alpha_1 + (aa_2 + bb_2)\alpha_2 + \dots + (aa_m + bb_m)\alpha_m$$

$$\in L(S)$$

Theorem: If S is a subset of a vector space V(F), then prove that

(i). S is a subspace of $V \Leftrightarrow L(S) = S$ and (ii). L(L(S)) = L(S).

Proof: Let $S = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$ be a subset of a vector space V(F).

(i) Case 1: Let S is a subspace of V.

Clearly $S \subseteq L(S)$.

For
$$\alpha \in L(S)$$
, $\alpha = a_1\alpha_1 + a_2\alpha_2 + \dots + a_m\alpha_m$, where $a_1, a_2, \dots, a_m \in F$.

Since S is a subspace of V(F), then

$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_m \alpha_m \in S$$
, by vector addition and scalar multiplication.

This shows that $L(S) \subseteq S$ and therefore L(S) = S.

Case 2: Let
$$L(S) = S$$
.

We know that L(S) is a subspace of a vector space V(F) (By previous theorem).

This implies that S is also a subspace of a vector space V(F).

(ii) We know that L(S) is a subspace of a vector space V(F) (Previous theorem).

Then, from (i)
$$L(L(S)) = L(S)$$

Theorem: If S and T are the subsets of a vector space V(F) then prove that

(i)
$$S \subseteq T \Rightarrow L(S) \subseteq L(T)$$
 and (ii) $L(S \cup T) = L(S) + L(T)$.

Proof:

(i) Let $\alpha \in L(S)$. Then

$$\alpha = a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 + \dots + a_n\alpha_n,$$

where $\alpha_i's \in S$ and $\alpha_i's \in F$, $\forall 1 \leq i \leq n$.

Since $S \subseteq T$, so that $\alpha_i's \in T$, for all i. Then

$$\alpha = a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 + \dots + a_n\alpha_n,$$

where $\alpha_i's \in T$ and $\alpha_i's \in F$, $\forall 1 \leq i \leq n$.

$$\Rightarrow \alpha \in L(T)$$

i.e.,
$$\alpha \in L(S) \Rightarrow \alpha \in L(T)$$

This represents that $L(S) \subseteq L(T)$.

(ii) Let $\alpha \in L(S \cup T)$, then α can be written as

$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + a_3 \alpha_3 + \dots + a_m \alpha_m + b_1 \beta_1 + b_2 \beta_2 + b_3 \beta_3 + \dots + b_n \beta_n,$$

where $a_i's$, $b_i's \in F$ and $\alpha_i's \in S$, $\beta_j's \in T$, for all $1 \le i \le m$, $1 \le j \le n$.

Since
$$a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 + \dots + a_m\alpha_m \in L(S)$$
 and $b_1\beta_1 + b_2\beta_2 + b_3\beta_3 + \dots + b_n\beta_n \in L(T)$.

Therefore $\alpha \in L(S) + L(T)$.

i.e.,
$$\alpha \in L(S \cup T) \Rightarrow \alpha \in L(S) + L(T)$$
 and therefore $L(S \cup T) \subset L(S) + L(T)$ ---- (1)

Conversely, suppose that $\alpha \in L(S) + L(T)$. Then

$$\alpha = \beta + \gamma$$
, where $\beta \in L(S)$ and $\gamma \in L(T)$.

Let
$$\beta = c_1 \alpha_1 + c_2 \alpha_2 + c_3 \alpha_3 + \dots + c_m \alpha_m$$
, $\gamma = d_1 \beta_1 + d_2 \beta_2 + d_3 \beta_3 + \dots + d_n \beta_n$,

where c_i 's, d_i 's $\in F$ and α_i 's $\in S$, β_j 's $\in T$, for all $1 \le i \le m$, $1 \le j \le n$.

This implies $\alpha_i's$, $\beta_j's \in S \cup T$ and then $\alpha = \beta + \gamma \in L(S \cup T)$.

i.e.,
$$\alpha \in L(S) + L(T) \Rightarrow \alpha \in L(S \cup T)$$
 and therefore $L(S) + L(T) \subset L(S \cup T)$ ---- (2)

From (1) & (2), we conclude that $L(S \cup T) = L(S) + L(T)$.

References:

- 1. https://prgc.ac.in/studyresources-view-76
- 2. https://prgc.ac.in/studyresources-view-75
- 3. J.N. Sharma & A.R. Vasista, Linear Agebra, Krishna Prakasham Mandir, Meerut.
- 4. A Text Book of B.Sc. Mathematics, Vol-III, S. Chand & Co.

THANK YOU